

Edexcel IGCSE Chemistry

Topic 4: Organic chemistry Alkanes

Notes

4.19 know the general formula for alkanes

- ullet C_nH_{2n+2} is the general formula
- E.g. ethane is C₂H₆

4.20 explain why alkanes are classified as saturated hydrocarbons

• Contain no C=C double bonds, therefore the carbons are saturated, because each carbon has formed its maximum of 4 single bonds

4.21 understand how to draw the structural and displayed formulae for alkanes with up to five carbon atoms in the molecule, and to name the unbranched-chain isomers

• Alkane molecules can be represented in the following forms:

• The first 4 alkanes are methane, ethane, propane and butane (MEPB: Monkeys Eat Peanut Butter)

alkane	structural formula	displayed formula
methane	CH₄	H H-C-H H
ethane	CH ₃ CH ₃	H H H-C-C-H H H
propane	CH ₃ CH ₂ CH ₃	H H H H - C - C - C - H I H H

butane	CH ₃ CH ₂ CH ₂ CH ₃	H H H H
pentane	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	H H H H H H-C-C-C-C-C-H H H H H

4.22 describe the reactions of alkanes with halogens in the presence of ultraviolet radiation, limited to mono-substitution; knowledge of reaction mechanisms is not required

- $\bullet \quad \mathsf{Br}_2 + \mathsf{C}_2\mathsf{H}_6 \ \, \text{-(UV)-> } \mathsf{C}_2\mathsf{H}_5\mathsf{Br} + \mathsf{HBr}$
- Halogen + alkane –(UV)-> halogenoalkane + hydrogen halide